20 research outputs found

    Predictive Agent-Based Crowd Model Design Using Decentralized Control Systems

    Get PDF
    As a complex system, crowd dynamics emerge bottom-up from the local interactions between pedestrians as component subsystems. This article proposes a predictive agent-based crowd simulation model to analyze the outcomes of emergency evacuation scenarios taking into account collisions between pedestrians, smoke, fire sprinklers, and exit indicators. The crowd model is based on a decentralized control system structure, where each pedestrian agent is governed through a deliberative-reactive control architecture. The simulation model for evacuation includes a routing-based control system for dynamic-guided evacuation. A design case illustrates the modeling process. Results show that the crowd simulation model based on agent autonomy and local interactions is able to generate higher level crowd dynamics through emergence.publishedVersio

    MEASUREMENT UNCERTAINTY IN LEGAL METROLOGY

    Get PDF
    In legal metrology, in addition to the elements of the measurement result, the measurement uncertainty is also required in order to establish the level of confidence or risk regarding compliance decisions. Because of this, the uncertainty assessment considers the indicated uncertainty of the utilized measuring device, as well as the uncertainty linked to calibration and any other uncertainties pertaining to how the measuring instrument is utilized in practice. The uncertainty of these readings must also be taken into account if further measures, such as pressure and temperature, are required. The basic concepts of measurement, legal metrology, measurement errors, measurement uncertainty, types of measurement uncertainties, the importance of the mixed models and two case studies in which we obtained different values for the uncertainty were examined in this article. Both of the two case studies that are discussed are the general uncertainty with a backup strategy and the uncertainty for partially transferred source flows. Here, the installation's operating modes, the formulae used to estimate uncertainty, and the procedure for doing so were all described

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Modélisation et optimisation des réacteurs tubulaires de polymérisation

    No full text
    The aim of this thesis is the investigation of modeling and optimization particularities of tubular polymerization reactors. The original work is divided in two sections, the first treating a modeling and optimization study of tubular reactors for methyl methacrylate polymerization in solution, and the second, an experimental and theoretical study of L-lactide reactive extrusion. In the first section, reactor simulations in similar operating conditions were performed in order to select a representative kinetic model among the published kinetic models for MMA solution polymerization. Two widely used numerical algorithms, one based on Pontryagin’s Minimum Principle and the other a Genetic Algorithm, were compared for an average-complexity optimization problem. The results showed a superior robustness of the Genetic Algorithm for this category of problems. The second part of the thesis deals with the modeling and optimization of L-lactide reactive extrusion. A kinetic model is proposed and its parameters estimated using nonlinear estimation numerical procedures based on experimentally measured data. Reactive extrusion experiments were performed in representative operating conditions. The Llactide/ polylactide flow in the extruder was characterized by simulation using the commercial software LUDOVIC®. The simulated residence time distributions characteristics are used to model the reactive extrusion process of two approaches, an axial dispersion model and a compartment model, based on compartments whose characteristics are deduced from the simulations using LUDOVIC®. The modeling results are in good agreement with the measured data in the same operating conditions.Le but de cette thèse est l’investigation des particularités des problèmes d’optimisation et modélisation des réacteurs tubulaires de polymérisation. La partie originale du travail est divisé en deux sections : la première traitant de l'étude théorique de la modélisation et de l’optimisation des réacteurs tubulaires de polymérisation du méthacrylate de méthyle en solution, et la deuxième, une étude expérimentale et théorique de l'extrusion réactive de L-lactide. Dans la première partie, afin de sélectionner un modèle cinétique représentatif, parmi les modèles publiés pour le processus de polymérisation de MMA, des simulations ont été effectuées en conditions identiques de fonctionnement. Deux algorithmes numériques, l’un basé sur le Principe du Minimum de Pontriaguine et l’autre de type Génétique, ont été comparés pour un problème d'optimisation de complexité moyenne. Les résultats ont montré une robustesse supérieure de l’Algorithme Génétique pour cette catégorie de problèmes. La deuxième partie de la thèse est consacrée à la modélisation et à l’optimisation de l'extrusion réactive du Llactide. Nous avons proposé un modèle cinétique et ses paramètres ont été estimés en utilisant des procédures numériques basées sur les données cinétiques expérimentales. Les expériences d'extrusion réactives ont été exécutées dans les conditions de fonctionnement représentatives. L'écoulement de L-lactide/polylactide dans l'extrudeuse a été caractérisé par la simulation en utilisant un logiciel commercial, LUDOVIC®. Les caractéristiques de la distribution des temps de séjour simulées sont utilisées pour modéliser le processus d'extrusion réactive en utilisant deux approches, un modèle à dispersion axiale et un modèle à base de compartiments, dont les caractéristiques sont déduites des simulations effectuées avec LUDOVIC®. Les résultats de la modélisation du processus sont en bon accord avec des données mesurées en mêmes conditions opératoires

    Predictive Agent-Based Crowd Model Design Using Decentralized Control Systems

    Get PDF
    As a complex system, crowd dynamics emerge bottom-up from the local interactions between pedestrians as component subsystems. This article proposes a predictive agent-based crowd simulation model to analyze the outcomes of emergency evacuation scenarios taking into account collisions between pedestrians, smoke, fire sprinklers, and exit indicators. The crowd model is based on a decentralized control system structure, where each pedestrian agent is governed through a deliberative-reactive control architecture. The simulation model for evacuation includes a routing-based control system for dynamic-guided evacuation. A design case illustrates the modeling process. Results show that the crowd simulation model based on agent autonomy and local interactions is able to generate higher level crowd dynamics through emergence

    A study of L-lactide ring-opening polymerization kinetics

    No full text
    International audienceThe paper presents an experimental study of L-lactide polymerization in molten state using as initiator the Stannous Octoate. The experiments were performed in a Haake mixer. The operating temperatures were between 170 and 195°C, the reaction time up to 60 min and monomer to initiator initial molecular ratio between 102 and 5.103. The conversion was determined by using 1H NMR and the molecular weights distributions by SEC. A preliminary mathematical modeling study was also performed, based on experimental data and a previously published reaction scheme

    Kinetics of methyl methacrylate combustion over a Pt/alumina catalyst

    No full text
    The combustion of methyl methacrylate (MMA) over a commercial Pt/γ-alumina catalyst was investigated, in the lean air mixtures specific for the depollution applications. The experiments were performed at temperatures between 150 and 360°C, with MMA concentrations of 460 to 800 ppmv and the gas flow rates between 200 and 300 mL min-1. The results evidenced a negative influence of MMA concentration on the combustion kinetics. A kinetic model of the combustion process was developed, based on the Langmuir–Hinshelwood mechanism, assuming the surface reaction between adsorbed oxygen atoms and adsorbed MMA molecules as the controlling step. The rate expression included the inhibition effects of MMA and water adsorption on the process kinetics. The MMA combustion process simulations evidenced the significant influences of the bulk gas to catalyst particle mass transfer, on the overall kinetics
    corecore